Abstract

The variations in feedstock characteristics, such as moisture and particle size distribution, lead to an inconsistent flow of feedstock from the biomass pre-processing system to the reactor in-feed system. These inconsistencies result in low on-stream times at the reactor in-feed equipment. This research develops an optimal process control method for a biomass pre-processing system comprised of milling and densification operations to provide the consistent flow of feedstock to a reactor's throat. This method uses a mixed-integer optimization model to identify optimal bale sequencing, equipment in-feed rate, and buffer location and size in the biomass pre-processing system. This method, referred to as the hybrid process control (HPC), aims to maximize throughput over time. We compare HPC with a baseline feed forward process control. Our case study based on switchgrass finds that HPC reduces the variation of a reactor's feeding rate by up to 100% without increasing the operating cost of the biomass pre-processing system for biomass with moisture ranging from 10 to 25%. Additionally, HPC reduces the cost of processing biomass by 0.36%–2.22%, and reduces processing time by 0.35%–2.24%. A biorefinery can adapt HPC to achieve its design capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.