Abstract

The wind energy generation system is complex because of varying wind speeds and its control systems to improve its ability of energy harvesting. This paper considers a hydraulic actuator-based variable-pitch angle control of a 1.5 MW wind turbine. The existing control systems of the pitch mechanism of the wind turbines are complex and bulky size. This study applied Genetic Algorithm based Proportional Integral Derivative Controller (GA-PID), Fractional Order Proportional Integral Derivative (FOPID), and Genetic Algorithm based Fractional Order Proportional Integral Derivative (GA-FOPID) controllers to adjust the pitch angle of the wind turbine blade. The performance of GA-FOPID, FOPID, and GA-PID controlled pitch angle is compared by considering different wind speeds. The GA-FOPID controller reduced the variation in mechanical power to 0.08% concerning the rated value and the variation in mechanical torque to 1.51% in comparison to the rated value. Therefore, the GA-FOPID controller shows better performance than the conventional PID.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.