Abstract

This paper investigates a novel control strategy that enables hybrid excitation permanent magnet synchronous generator (HPMSG) to track the optimal extracted power of the modern wind turbine type (NASA-NSF). The proposed control mathematical model is based on two cases of variable speed—Maximum Power Point Tracking (MPPT) and variable speed—Constant Power Point Tracking (CPPT). The later one is specified for wind gust and higher than rated wind speed withstanding operation. The HPMSG generator quantitative performance characteristics are presented and validated through simulation for both steady and dynamics states. Simulation results prove the capability of the generator to operate correctly under load and speed variation over both MPPT and CPPT. The output voltage stays, in both cases, within the much lower limits that imposed by maximum values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.