Abstract

AbstractSustained friction drag reduction and heat transfer augmentation are simultaneously achieved in a fully developed channel flow where the averaged transport equations and wall boundary conditions for momentum and heat have identical form. Zero-net-mass-flux wall blowing and suction is assumed as a control input and its spatio-temporal distribution is determined based on optimal control theory. When the root-mean-square value of the control input is 5 % of the bulk mean velocity, the friction drag is decreased by 24 % from the uncontrolled value, whereas the heat transfer is more than doubled. Optimizations with different amplitudes of the control input and different Reynolds numbers reveal that the optimal control inputs commonly exhibit the property of a downstream travelling wave, whose wavelength is ∼250 in wall units and phase velocity is ∼30 % of the bulk mean velocity. Detailed analyses of the controlled velocity and thermal fields show that the travelling wave input contributes to dissimilar heat transfer enhancement through two distinct mechanisms, i.e. direct modification of the coherent velocity and thermal fields and an indirect effect on the random fields. The present results show that the divergence-free velocity vector and the conservative scalar are essentially different, and this is a key to achieving dissimilar heat transfer enhancement in turbulent shear flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.