Abstract

Motivated by fatigue damage models, this paper addresses optimal control problems governed by a non-smooth system featuring two non-differentiable mappings. This consists of a coupling between a doubly non-smooth history-dependent evolution and an elliptic PDE. After proving the directional differentiability of the associated solution mapping, an optimality system which is stronger than the one obtained by classical smoothening procedures is derived. If one of the non-differentiable mappings becomes smooth, the optimality conditions are of strong stationary type, i.e., equivalent to the primal necessary optimality condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.