Abstract
Although a number of cost-e ective strategies have been proposed for the chemotherapy of HIV infection, the termination level of viral load and latent reservoir is barely considered. However, the viral load at the termination time is an important biomarker because suppressing viral load to below the detection limit is a major objective of current antiretroviral therapy. The pool size of latently infected cells at the termination time may also play a critical role in predicting a rapid viral rebound to the pretreatment level or post-treatment control. In this work, we formulate an optimal control problem by incorporating the termination level in terms of viral load, latently and productively infected T cells into an existing HIV model. The necessary condition for this optimal system is derived using the Pontryagin's maximum principle. Numerical analysis is carried out using Runge-Kutta 4 method for the forward-backward sweep. Our results suggest that introducing the termination viral load into the control provides a better strategy in HIV chemotherapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have