Abstract
This study exploits an optimal control approach for solving the general robust control problem of active pantograph suspension systems with actuator delays and time-varying contact force such that both the stabilisation and optimal performance are achieved. On the basis of Bellman's optimality principle and Razumikhin theorem, the general robust control design problem can be equivalently transformed into an optimal control problem with the amount of matched uncertainties involved in the performance index. A stability criterion has been developed under which the time varying stiffness of contact force and time-delayed actuation force can not only achieve stability, but also acquire the guaranteed level of performance for regulation. A suitable linear state feedback control law is characterised via Lyapunov stability theory to ensure quadratic stability and performance robustness of the closed-loop systems. The effectiveness of the proposed design is demonstrated through simulation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.