Abstract

Optimally enhanced vision of a polarized lightmark in obscured weather conditions (fog, haze, cloud) is reported when imaged over long distances (above 1 km) using a snapshot polarimetric camera. We derive and experimentally validate an optimal adaptive polarimetric representation, whose expression is shown to depend on the correlation of the noise fluctuations in the two orthogonal polarimetric images. We quantitatively compare the gain (experimental and theoretical) in contrast with respect to standard intensity imaging, and standard polarimetric representations. Lastly, we discuss efficient implementation strategies for automated detection in real-time in obscured weather conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.