Abstract

The configuration of user-side energy storage can effectively alleviate the timing mismatch between distributed photovoltaic output and load power demand, and use the industrial user electricity price mechanism to earn revenue from peak shaving and valley filling. The configuration of photovoltaic & energy storage capacity and the charging and discharging strategy of energy storage can affect the economic benefits of users. This paper considers the annual comprehensive cost of the user to install the photovoltaic energy storage system and the user’s daily electricity bill to establish a bi-level optimization model. The outer model optimizes the photovoltaic & energy storage capacity, and the inner model optimizes the operation strategy of the energy storage. And calculate the actual life of the energy storage through the rain flow counting method. Use the fmincon function in the optimization toolbox to solve the problem on the matlab platform. The result of the calculation example verifies the improvement effect of the bi-level optimization model proposed in this paper on user economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.