Abstract

The high-energy consumption and high construction density of 5G base stations have greatly increased the demand for backup energy storage batteries. To maximize overall benefits for the investors and operators of base station energy storage, we proposed a bi-level optimization model for the operation of the energy storage, and the planning of 5G base stations considering the sleep mechanism. A multi-base station cooperative system composed of 5G acer stations was considered as the research object, and the outer goal was to maximize the net profit over the complete life cycle of the energy storage. Furthermore, the power and capacity of the energy storage configuration were optimized. The inner goal included the sleep mechanism of the base station, and the optimization of the energy storage charging and discharging strategy, for minimizing the daily electricity expenditure of the 5G base station system. Additionally, genetic algorithm and mixed integer programming were used to solve the bi-level optimization model, analyze the numerical example test comparison of the three types of batteries and the net income of the configuration, and finally verify the validity of the model. Furthermore, the sleep mechanism, the charging and discharging strategy for energy consumption, and the economic benefits for the operators were investigated to provide reference for the 5G base station energy storage configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.