Abstract
In the isobutane dehydrogenation process, coupling reaction and separation and optimization of the intensified process can improve the isobutane conversion and selectivity, reduce operational costs and lets to produce pure hydrogen. In this research, the radial flow moving bed reactors in the Olefex technology have been supported by Pd–Ag membrane plate to remove hydrogen from the reaction zone. The reactions occur in the tube side and the hydrogen is permeated from the reaction zone to the sweep gas stream. The proposed configuration has been modeled heterogeneously based on the mass and energy conservation laws considering reaction networks. To prove the accuracy of the considered model, the simulation results of the conventional process have been compared against available plant data. The Genetic algorithm as an effective method in the global optimization has been considered to optimize the operating condition of membrane reactors to enhance isobutene productivity. In this optimal configuration, the isobutene production has been enhanced about 3.7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical Engineering and Processing: Process Intensification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.