Abstract

Spectral methods are among the most extensively used techniques for model reduction of distributed parameter systems in various fields, including fluid dynamics, quantum mechanics, heat conduction, and weather prediction. However, the model dimension is not minimized for a given desired accuracy because of general spatial basis functions. New spatial basis functions are obtained by linear combination of general spatial basis functions in spectral method, whereas the basis function transformation matrix is derived from straightforward optimization techniques. After the expansion and truncation of spatial basis functions, the present spatial basis functions can provide a lower dimensional and more precise ordinary differential equation system to approximate the dynamics of the systems. The numerical example shows the feasibility and effectiveness of the optimal combination of spectral basis functions for model reduction of nonlinear distributed parameter systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.