Abstract
Several authors have discussed Kalman filtering procedures using a mixture of normals as a model for the distributions of the noise in the observation and/or the state space equations. Under this model, resulting posteriors involve a mixture of normal distributions, and a “collapsing method” must be found in order to keep the recursive procedure simple. We prove that the Kullback-Leibler distance between the mixture posterior and that of a single normal distribution is minimized when we choose the mean and variance of the single normal distribution to be the mean and variance of the mixture posterior. Hence, “collapsing by moments” is optimal in this sense. We then develop the resulting optimal algorithm for “Kalman filtering” for this situation, and illustrate its performance with an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.