Abstract

The versatility of fish to adapt to different swimming requirements is attributed to their complex muscular system. Fish modulate their fin stiffness and shape for maximized performance. In this paper, optimal chordwise stiffness profiles that maximize the propulsive performance have been predicted using theoretical studies. An experimental setup has been fabricated to measure the stiffness profiles of real fish caudal fins. Chordwise varying stiffness robotic fins fabricated using carbon fiber reinforced composites (CFRC) have been tested in the water tunnel to evaluate their performance over constant stiffness fins. It is observed that the varying stiffness fins produce larger thrusts and efficiencies compared to constant stiffness fins for all the operating conditions considered in this work. A comparison of the digital image correlation (DIC) measured deformations of the fins showed that the better performance of varying stiffness fins is due to their larger curvatures and trailing edge amplitudes. These theoretical and experimental studies provide a greater understanding of the role of stiffness in fish fins for locomotion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call