Abstract

Pigeons' unexpected competence in learning to categorize unseen histopathological images has remained an unexplained discovery for almost a decade (Levensonet al2015PLoS One10e0141357). Could it be that knowledge transferred from their bird's-eye views of the earth's surface gleaned during flight contributes to this ability? Employing a simulation-based verification strategy, we recapitulate this biological phenomenon with a machine-learning analog. We model pigeons' visual experience during flight with the self-supervised pre-training of a deep neural network on BirdsEyeViewNet; our large-scale aerial imagery dataset. As an analog of the differential food reinforcement performed in Levensonet al's study 2015PLoS One10e0141357), we apply transfer learning from this pre-trained model to the same Hematoxylin and Eosin (H&E) histopathology and radiology images and tasks that the pigeons were trained and tested on. The study demonstrates that pre-training neural networks with bird's-eye view data results in close agreement with pigeons' performance. These results support transfer learning as a reasonable computational model of pigeon representation learning. This is further validated with six large-scale downstream classification tasks using H&E stained whole slide image datasets representing diverse cancer types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.