Abstract
Electric vehicles (EVs) have emerged as a transformative solution for reducing carbon emissions and promoting environmental sustainability in the automotive industry. However, the widespread adoption of EVs in the United States faces challenges, including high costs and unequal access to charging infrastructure. To overcome these barriers and ensure equitable EV usage, a comprehensive understanding of the intricate interplay among social, economic, and environmental factors influencing the placement of charging stations is crucial. This study investigates the key variables that contribute to demographic disparities in the accessibility of EV charging stations (EVCSs). We analyze the impact of various factors, including EV percentage, geographic area, population density, available electric vehicle supply equipment (EVSE) ports, electricity sources, energy costs, per capita and average family income, traffic patterns, and climate, on the placement of EVCSs in nine selected US states. Furthermore, we employ predictive modeling techniques, such as linear regression and support vector machine, to explore unique nuances in EVCS installation. By leveraging real-world data from these states and the identified variables, we forecast the future distribution of EVCSs using machine learning. The linear regression model demonstrates exceptional effectiveness, achieving 90% accuracy, 94% precision, 89% recall, and a 91% F1 score. Both graphical analysis and machine learning converge on a significant finding: Texas emerges as the most favorable state for optimal EVCS placement among the studied areas. This research enhances our understanding of the multifaceted dynamics that govern the accessibility of EVCSs, thereby informing the development of policies and strategies to accelerate EV adoption, reduce emissions, and promote social inclusivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.