Abstract

The relevance of electric vehicles (EVs) is increasing along with the relative issues. The definition of smart policies for scheduling the EVs charging process represents one of the most important problems. A discrete-event approach is proposed for the optimal scheduling of EVs in microgrids. This choice is due to the necessity of limiting the number of the decision variables, which rapidly grows when a small-time discretization step is chosen. The considered optimization problem regards the charging of a series of vehicles in a microgrid characterized by renewable energy source, a storage element, the connection to the main grid, and a charging station. The objective function to be minimized results from the weighted sum of the cost for purchasing energy from the external grid, the weighted tardiness of the services provided, and a cost related to the occupancy of the socket. The approach is tested on a real case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.