Abstract
Two methods are presented for simultaneously detecting a random signal field and estimating its Markovian parameters in the qq prurience of a white Gaussian noise field. The first method provides the Neyman-Pearson decision rule for determining the absence-or-presence of the signal and the maximum {\em a posteriori} likelihood estimators of the parameters. The second provides the Bayes decision rule for the absence-or-presence of the signal and the minimum mean-square error estimators of the parameters. Both methods allow continual causal detection and estimation based on the continuous space-time data, and their detection and estimation statistics are given in terms of a single statistic, which is the solution of a certain stochastic integral equation. Furthermore, an approximate scheme is developed for recursively generating this statistic by using spatially and temporally sampled data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.