Abstract

AbstractDuring polymerization in a nongrowing cell population of Ralstonia eutropha, alternating between two different carbon sources (fructose and fructose/valeric acid) could lead to the production of block copolymers consisting of blocks of homo‐poly‐3‐hydroxybutyrate (PHB) and polyhydroxybutyrate‐co‐valerate (PHBV) copolymer. The problem of finding the optimal number of carbon source switches and corresponding switching times that maximize the final concentration of diblock copolymers (PHB‐PHBV and PHBV‐PHB) was addressed. It was mathematically formulated in the mixed‐integer nonlinear programming (MINLP) framework, which allows the decomposition of the original problem into the primal and master problems. The primal problem corresponds to the original problem for a fixed number of carbon source switches, whereas the master problem consists of finding the number of carbon source switches that maximizes the optimum solutions of all possible primal problems. The global optimum was obtained for 39 carbon source switches. It corresponds to a mass fraction of 50.6% of final diblock copolymer concentration over the final total polymer concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.