Abstract

A hybrid renewable energy system, including photovoltaic (PV) plant, wind farm, concentrated solar power (CSP) plant, battery, electric heater, and bidirectional inverter, is proposed. The optimal combination of power plants and energy storage devices, and their optimal capacities are obtained by the multi-objective optimization algorithm. A superior operation strategy of the system, which consists of multiple energy storage technologies and flexible power supplies, is proposed. Results show that the PV plant with an inverter can generate power at the lowest cost but with poor reliability. The combination of the CSP plant and PV plant is an effective way to improve power generation reliability economically. When low investment costs of PV plant, battery, and inverter are adopted, the battery is preferentially integrated into PV plant to reduce the loss of power supply probability (LPSP) to a certain level. But it still cannot meet the high power generation reliability requirements. The CSP plant is still an essential technology to further significantly reduce LPSP with good economic performance. The operation strategy in which the power cycle takes precedence over the battery to supplement the power shortage is recommended. The levelized cost of energy (LCOE) of the system with power cycle output priority is 8.36% lower than that of the system with battery output priority when the LPSP is 1.34%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call