Abstract

The performance of a digital mammography system (Siemens Mammomat Novation) using different target/filter combinations and tube voltage has been assessed. The objective of this study is to optimize beam quality selection based on contrast-to-noise ratio (CNR) and mean glandular dose (MGD). Three composition of breast were studied with composition of glandular/adipose of 30/70, 50/50, and 70/30. CNR was measured using 2, 4 and 6cm-thick simulated breast phantoms with an aluminium sheet of 0.1mm thickness placed on top of the phantom. Three target/filter combinations, namely molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh) and tungsten/rhodium (W/Rh) with various tube voltage and mAs were tested. MGD was measured for each exposure. For 50/50 breast composition, Mo/Rh combination with tube voltage 26kVp is optimal for 2cm-thick breast. W/Rh combination with tube voltage 27 and 28 kVp are optimal for 4 and 6cm-thick breast, respectively. For both 30/70 and 70/30 breast composition, W/Rh combination is optimal with tube voltage 25, 26 and 27kVp, respectively. From our study it was shown that there are potential of dose reduction up to 11% for a set CNR of 3.0 by using beam quality other than that are determined by AEC selection. Under the constraint of lowest MGD, for a particular breast composition, calcification detection is optimized by using a softer X-ray beam for thin breast and harder X-ray beam for thick breast. These experimental results also indicate that for breast with high fibroglandular tissues (70/30), the use of higher beam quality does not always increase calcification detection due to additional structured noise caused by the fibroglandular tissues itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.