Abstract

Species diversity quantification is a crucial step towards the biodiversity conservation and ecosystem health. The technological advancements and existing limitations of multispectral remote sensing has increased the popularity of hyperspectral remote sensing which found its use in the estimation of species diversity. The contiguous narrow bands available in hyperspectral data enables the improvised assessment of diversity index but the overlapping of the information could result in the redundancy that needs to be handled. Due to this, the idenfication of optimal bands is very important; hence, the current study provides modified hyperspectral indices through detection of optimum bands for estimating species diversity within Shoolpaneshwar Wildlife Sanctuary (SWS), India. Narrow hyperspectral bands of EO-1 Hyperion image were screened and the best optimum wavelength from visible and Near Infrared (NIR) regions were identified based on coefficient of determination (r2) between band reflectance and in situ measured species diversity. For in situ species diversity measurements, quadrat sampling was carried out in SWS and different Diversity Indices (DIs) namely the Shannon Weiner DI, Margalef DI, McIntosh DI and Brillouin DI were calculated. The identified optimum wavelengths were then employed for modifying 38 existing spectral indices which were then investigated for testing their relation with the in situ DIs. The obtained optimum bands in visible and NIR regions were found to be in correspondence with four DIs. Among several indices used in this study, during validation, modified Non-linear index, modified Red Edge Position Index, modified Structure Insensitive Pigment Index and modified Red Green Ratio Index were identified as the best hyperspectral indices for determining Shannon Weiner DI, Margalef DI, McIntosh DI and Brillouin DI, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.