Abstract

Attitude takeover control of failed spacecraft, which is a key technology in on-orbit service, has received extensive attention in recent years. In the attitude takeover control mission, inertial parameters of the failed spacecraft are unknown or inaccurate. In the meantime, actuator consumption must be considered owing to the limited fuel or energy of the service spacecraft. Using a failed spacecraft takeover control mission executed by multiple nanosatellites as an example, an optimal attitude takeover control method is proposed in this paper to optimize actuator consumption while addressing model uncertainties. Firstly, an auxiliary nonlinear system is constructed and then a radial basis function neural network is employed to estimate the unknown nonlinear dynamics model. Secondly, an optimal control law is designed by combining the inverse optimal principle, adaptive technique, and backstepping theory. Finally, the Harris Hawks optimization (HHO) is adopted for the control allocation problem of multiple nanosatellites. Simulation results demonstrate the feasibility and effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call