Abstract
Antenna array is essential factor for multiple- input multiple-output (MIMO) wireless systems. Since the antenna array is composed of closely spaced elements, the mutual coupling among the elements cannot be ignored for the best performance of the array. Mutual coupling affects the MIMO channel, so the performance of a MIMO system, including channel capacity and diversity, varies with the degree of mutual coupling. The effect of mutual coupling is a function of the antenna load impedance. Therefore, designing an optimal element-matched array for a MIMO system requires consideration of the optimal matching condition for the array elements, the one that maximizes the channel capacity. We evaluated the effects of mutual coupling with various matching conditions in dipole arrays, and investigated their effects on the path correlation and channel capacity of MIMO systems. Simulation showed that the conventional conjugate matching of each element is still suitable for closely spaced elements except when the separation is about less than 0.1λ. Theoretical consideration of the received power of a closely-spaced-element array is also provided to show the effects of mutual coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.