Abstract

This study presents an experimental nanoparticle synthesis and the numerical analysis of a parabolic trough collector (PTC) operating with olive leaf synthesized TiO2/water nanofluid. The PTC is modeled after the LS-2 collector for various operating conditions. An analysis of the heat transfer and entropy generation in the PTC is carried out based on the first and second laws of thermodynamics for various parameters of nanoparticle volumetric concentration (0 ≤ φ ≤ 8%), mass flow rate (0.1 ≤ m˙ ≤ 1.1 kg/s), and inlet temperatures (350–450 K) under turbulent flow regime. The effect of these parameters is evaluated on the Nusselt number, thermal losses, heat convection coefficient, outlet temperature, pressure drop, entropy generation rate, and Bejan number. The results show that the values of the Nusselt number decrease with higher concentrations of the nanoparticles. Also, the addition of nanoparticles increases the heat convection coefficient of the nanofluid compared to water. The thermal efficiency of the system is improved with the use of the new nanofluid by 0.27% at flow rates of 0.1 kg/s. The entropy generation study shows that increasing the concentration of nanoparticles considerably decreases the rate of entropy generation in the system. It is also observed that increasing the volumetric concentration of nanoparticles at low mass flow rates has minimal effect on the rate of entropy generation. Finally, a correlation that provides a value of mass flow rate that minimizes the entropy generation rate is also presented for each values of inlet temperature and nanoparticle volumetric concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call