Abstract

This paper aims to study the effect of nanoparticle shape on the entropy generation characteristics of boehmite alumina nanofluid flowing through a horizontal double-pipe minichannel heat exchanger. Boehmite alumina (γ-AlOOH) nanoparticles of different shapes (cylindrical, brick, blade, platelet, and spherical) are dispersed in a mixture of water/ethylene glycol as the nanofluid. The nanofluid and water flow in the tube side and annulus side of the heat exchanger, respectively. The effects of the Reynolds number and nanoparticle concentration on the frictional entropy generation rate, thermal entropy generation rate, total entropy generation rate and Bejan number are numerically analyzed for different nanoparticle shapes. The obtained results demonstrated that the nanofluids containing platelet shape and spherical shape nanoparticles have the highest and lowest rates of thermal, frictional, and total entropy generation, respectively. Additionally, it was found that the rates of thermal, frictional, and total entropy generation increase with an increase in the Reynolds number, while the opposite is true for the Bejan number. Furthermore, it was inferred from the obtained results that the increase of nanoparticle concentration results in higher frictional and total entropy generation rates and lower Bejan number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.