Abstract
The high dimensionality and uncertainty of renewable energy generation restrict the ability of the microgrid to consume renewable energy. Therefore, it is necessary to fully consider the renewable energy generation of each day and time period in a long dispatching period during the deployment of energy storage in the microgrid. To this end, a typical multi-day scenario set is used as the simulation operation scenario, and an optimal allocation method of microgrid energy storage capacity considering the uncertainty of renewable energy generation is designed. Firstly, the historical scenarios are clustered into K types of daily state types using the K-means algorithm, and the corresponding probability distribution is obtained. Secondly, the Latin hypercube sampling method is used to obtain the state type of each day in a multi-day scenario set. Then, the daily scenario generation method based on conditional generative adversarial networks is used to generate a multi-day scenario set, combining the day state type as a condition, and then the typical scenario set is obtained using scenario reduction. Furthermore, a double-layer optimization allocation model for the energy storage capacity of microgrids is constructed, in which the upper layer optimizes the energy storage allocation capacity and the lower layer optimizes the operation plans of microgrids in each typical scenario. Finally, the proposed model is solved using the PSO algorithm nested with the CPLEX solver. In the microgrid example, the proposed method reduces the expected annual total cost by 19.66% compared with the stochastic optimal allocation method that assumes the scenic power obeys a specific distribution, proving that it can better cope with the uncertainty of renewable energy generation. At the same time, the expected annual total cost is reduced by 6.99% compared with the optimal allocation method that generates typical daily scenarios based on generative adversarial networks, which proves that it can better cope with the high dimensionality of renewable energy generation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have