Abstract

and the parameters of the model have been chosen from experimental works [8-10]. We studied many values of EPSP and refractory period parameters, yielding regimes either with or without superposition of avalanches. We analyze each layer separately as well as the whole network statistics. The active cluster size distribution agrees with a cutoff power law fit. The cutoff of these power laws scales with the layers’ linear size, L. Nevertheless, contrary to our expectations, the sizes of the avalanches are distributed in a bi-modal fashion. The active cluster size power law distributions and the longest lasting activity are found for EPSP = 1.21, which is the average experimental value for V1 pyramidal neurons [11]. For other values of EPSP, both the activity vanishes quickly and the cluster size distributions lose their cutoff power law shape. Surprisingly, only the cluster size, instead of the avalanches’ sizes and lifetimes distributions, displayed power law shape. We are currently determining the behavior of an order parameter to solidify our findings.

Highlights

  • The cortical processing of visual information begins at the primary visual area of the cerebral cortex (V1)

  • By analyzing the duration of the total spiking time series of these avalanches for different values of the excitatory postsynaptic potential (EPSP), the authors found a regime in which the activity lasts longer and called it the critical state of the system [3]

  • The input comes from the Lateral Gineculate Nucleus (LGN) square layer, with linear size L, and the output is the last compartment of every axon coming out of layer 2/3 to connect to V2

Read more

Summary

Introduction

The cortical processing of visual information begins at the primary visual area of the cerebral cortex (V1). It maps completely the visual field, receiving input from the Lateral Gineculate Nucleus (LGN) and transmitting the output to the secondary visual area (V2).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.