Abstract
AbstractThis chapter describes basic optical processes in semiconductor crystals, including interband optical absorption, gain, and emission. The consideration is performed for the two types of crystal structures, zinc-blende and wurtzite, in the framework of a semi-classical approach when the electromagnetic field is treated classically while the electrons are described by the quantum mechanical Hamiltonian and wave functions. Einstein coefficients are introduced in order to define the connection between absorption, stimulated emission, and spontaneous emission. Optical selection rules are obtained in the framework of the k⋅p theory by calculating the interband momentum matrix elements. The concepts of Wannier–Mott excitons and exciton polaritons are discussed in the framework of the effective mass approximation for the case of the direct band-gap semiconductors. The chapter establishes the symmetry classification of excitonic states in the semiconductor crystals in terms of the theory of irreducible group representations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have