Abstract
Interface tailoring represents a route for integrating complex functions in systems and materials. Although it is ubiquitous in biological systems--e.g., in membranes--synthetic attempts have not yet reached the same level of sophistication. Here, we report on the fabrication of an organic field-effect transistor featuring dual-gate response. Alongside the electric control through the gate electrode, we incorporated photoresponsive nanostructures in the polymeric semiconductor via blending, thereby providing optical switching ability to the device. In particular, we mixed poly(3-hexylthiophene) with gold nanoparticles (AuNP) coated with a chemisorbed azobenzene-based self-assembled monolayer, acting as traps for the charges in the device. The light-induced isomerization between the trans and cis states of the azobenzene molecules coating the AuNP induces a variation of the tunneling barrier, which controls the efficiency of the charge trapping/detrapping process within the semiconducting film. Our approach offers unique solutions to digital commuting between optical and electric signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.