Abstract

The optically stimulated luminescence (OSL) technique has already became a successful tool in personal radiation dosimetry, geological and archeological dating, and in radiation diagnostic imaging. This review briefly describes the history of OSL. Significant advances have been made recently in the theoretical study of OSL to explain the behavior of radiation sensitive materials with several types of dosimetry traps, recombination centers and competing deep traps. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al 2O 3:C as a material of choice for many dosimetric applications; present technology can provide Al 2O 3:C fiber sensors with diameters as small as 300 μ m . A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.