Abstract

Recent experiments have demonstrated that it is possible to measure optically stimulated exoelectron emission (OSE) signals simultaneously with optically stimulated luminescence (OSL) from quartz samples. These experiments provide valuable information on the charge movement in quartz grains. Two specific experiments measured the temperature dependence of the OSL and OSE signals on preheat and stimulation temperature. This paper provides a quantitative description of these experiments by using a previously published theoretical model for photostimulated exoelectron emission (PSEE). The experimental data yield a value of χ∼1.2 eV for the work function of quartz. The experimental temperature dependence of the OSE signals is interpreted on the basis of a photo-thermostimulated (PTSEE) process involving the main OSL trap at ∼320 °C; this process takes place with a thermal assistance energy estimated at W∼(0.29±0.02) eV. Good quantitative agreement is obtained between theory and experiment by assuming a thermal broadening of the thermal depletion factor for the OSL traps, described by a Gaussian distribution of energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call