Abstract

The signal properties of quartz optically stimulated luminescence (OSL) vary from sample to sample, and even from grain to grain, in terms of, for example, signal intensity or the composition of OSL signal components. However, the cause of the variation in quartz OSL properties is not well understood. Here, we report our experimental observations of continuous wave and linearly modulated OSL signals in quartz grains from fresh bedrocks, saprolites, and sediments in Korea. The OSL signals in quartz grains from both fresh bedrocks and saprolites in the granitic and metamorphic rocks are dominated by slower OSL components, with no fast OSL component. By contrast, the OSL signals in quartz extracts from sandstones are predominantly composed of fast OSL components. Quartz extracts derived from thermally metamorphosed or diagenetically recrystallised sandstones, however, tend to emit weaker OSL signals, a property related to intense slower OSL components. Along the fluvial transportation path, slower OSL components dominate near the host granite, but their absolute/relative intensity decreases with a simultaneous increase in the fast OSL component with transportation distance. OSL signal characteristics suitable for dating appear to be acquired during sedimentary processes after the liberation of quartz grains from granitic and metamorphic bedrock. Therefore, granitic and metamorphic quartz grains should be transported a sufficient distance for the fast OSL component to be sensitised. However, unless they have been affected by post-thermal metamorphism and recrystallisation, the OSL signal properties of quartz grains released from Cretaceous sedimentary rocks seem to be suitable for OSL dating, regardless of the transportation distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call