Abstract

Dynamically tunable laser sources are highly promising for realizing visionary concepts of integrated photonic circuits and other applications. In this paper, a GaN-based laser with an integrated PN junction heater on Si is fabricated. The photoluminescence properties of the GaN beam cavity are controlled by temperature, and the Joule heater provides electrically driven regulation of temperature. These two features of the cavity make it possible to realize convenient tuning of the lasing properties. The multi-functional GaN beam cavity achieves optically pumped lasing with a single mode near 362.4 nm with a high Q-factor of 1394. The temperature of this device increases by 0–5 °C under the Joule heating effect. Then, electrical control of the lasing mode is demonstrated. The lasing resonant peak shows a continuous redshift of about 0.5 nm and the device also exhibits dynamic switching of its lasing mode. The lasing modulation can be ascribed to temperature-induced reduction of the bandgap. Our work may be of benefit for external optical modulation in future chip-based optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call