Abstract

We show that conical intersections can be created in laboratory coordinates by dressing a parabolic trap for ultracold atoms or molecules with a combination of optical and static magnetic fields. The resulting ring trap can support single-particle states with half-integer rotational quantization and many-particle states with persistent flow. Two well-separated atomic or molecular states are brought into near resonance by an optical field and tuned across each other with an inhomogeneous magnetic field. Conical intersections occur at the nodes in the optical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.