Abstract
For two states of opposite parity that cross as a function of an external magnetic field, the addition of an electric field will break the symmetry and induce an avoided crossing. A suitable arrangement of fields may be used to create a conical intersection as a function of external spatial coordinates. We consider the effect of the resulting geometric phase for ultracold polar molecules. For a Bose-Einstein condensate in the mean-field approximation, the geometric phase effect induces stable states of persistent superfluid flow that are characterized by half-integer quantized angular momentum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.