Abstract

We propose a method to generate a two-dimensional cluster state of polarization encoded photonic qubits from two coupled quantum dot emitters. We combine the proposal for generating one-dimensional cluster state strings from a single dot, with a new proposal for an induced conditional phase gate between the two quantum dots. The entanglement between the two dots translates to entanglement between the two photonic cluster state strings. Further interpair coupling of the quantum dots using cavities and waveguides can lead to a two-dimensional cluster sheet, the importance of which stems from the fact that it is a universal resource for quantum computation. Analysis of errors indicates that our proposal is feasible with current technology. Crucially, the emitted photons need not have identical frequencies, and so there are no constraints on the resonance energies for the quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.