Abstract

To present an advanced device scheme of high-performance optoelectronic synapses, herein, we demonstrated the electrically- and/or optically-drivable multifaceted synaptic capabilities on the 2D semiconductor channel-based ferroelectric field-effect transistor (FeFET) architecture. The device was fabricated in the form of the MoS2/PZT FeFET, and its synaptic weights were effectively controlled by dual stimuli (i.e., both electrical and optical pulses simultaneously) as well as single stimuli (i.e., either electrical or optical pulses alone). This could be attributed to the electrical pulse-tunable strong ferroelectric polarization in PbZrxTi1−xO3 (PZT) as well as the polarization field-enhanced persistent photoconductivity effect in MoS2. Additionally, it was confirmed that the proposed device possesses substantial activity, achieving approximately 95% pattern recognition accuracy. The results substantiate the great potential of the 2D semiconductor channel-based FeFET device as a high-performance optoelectronic synaptic platform, marking a pivotal stride towards the realization of advanced neuromorphic computing systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.