Abstract

Although Ge nanowires (GeNWs) have been extensively studied in the last decade the information about their vibrational modes is still scarce, their correct comprehension could hasten the development of new microelectronic technologies, therefore, in this work we aimed to study the vibrational properties, Raman and IR and spectrum of GeNWs using the first principles density functional perturbation theory. The nanowires are modelled in the [001] direction and all dangling bonds are passivated with H and Cl atoms. Results show that the vibrational modes can be classified in three frequency intervals, a low frequency one (between 0 and 300cm−1) of mainly GeGe vibrations, and two of GeH bending and stretching vibrations (400–500cm−1 and 2000cm−1, respectively). There is a shift of the highest optical modes of GeGe vibrations compared to their bulk counterparts due to phonon confinement effects, however it is masked by some GeH bond bending modes as demonstrated by the IR and Raman responses. The Cl passivated case shows a larger number of modes at lower frequencies due to the higher mass of Cl compared to H, which in turn reduces the red shift of the highest optical modes frequencies. These results could be important for the characterization of GeNWs with different surface passivations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.