Abstract

Following recent progress in the experimental application of electro-optic sampling to the detection of the quantum fluctuations of the electromagnetic-field ground state and ultrabroadband squeezed states on a subcycle scale, we propose an approach to elevate broadband electro-optic sampling from a spectroscopic method to a full quantum tomography scheme, able to reconstruct a free-space quantum state directly in the time domain. By combining two recently developed methods to theoretically describe quantum electro-optic sampling, we analytically relate the photon-count probability distribution of the electro-optic signal to a transformed phase-space quasiprobability distribution of the sampled quantum state as a function of the time delay between the sampled midinfrared pulsed state and an ultrabroadband near-infrared probe pulse. We catalog and analyze sources of noise and show that in quantum electro-optic sampling with an ultrabroadband probe pulse one can expect to observe thermalization due to entanglement breaking. Mitigation of the thermalization noise enables a tomographic reconstruction of broadband quantum states while granting access to its dynamics on a subcycle scale. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.