Abstract

Novel Ca2MgWO6 phosphors doped with xEr3+ (x = 0.5, 1, 2, 3, and 4 mol%) were synthesized using the solid-state reaction method. Using XRD and FTIR analyses, successful product formation was confirmed. Subsequently, the phosphor was optimized by focusing on the characteristic emission peak at 529 nm, arising from the transition 2H11/2 → 4I15/2. The optimal concentration of Er³⁺ for the given host system was determined to be 2 mol%. Meticulous analyses revealed that the optimized phosphor possessed a direct optical band gap of 3.68 eV and the bonding parameter confirmed that the nature of bonding was ionic nature between the dopant and the host. Furthermore, phosphor also demonstrated high thermal stability up to 500 °C, excellent thermal quenching temperature of 357.43 K, and anomalous temperature-dependent emission properties. All these incredible features make the prepared phosphor a promising candidate for multifield applications like light generation, temperature sensing, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.