Abstract

We propose a method to control a graphene-based mechanical switch with light. By positioning a self-supporting graphene sheet parallel to a doped silicon membrane, irradiation of the membrane with light can bring the graphene into contact with the membrane. This operation is based on the enhancement of the Casimir force between the graphene sheet and a doped silicon membrane that results from photoionization; therefore, pull-in phenomena can occur even without applying any voltage. We theoretically investigated the dependence of the maximum displacement of a graphene sheet on the power of the irradiation light. Furthermore, the switching time is estimated by analyzing the time-evolution of the carrier density in a doped silicon membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.