Abstract

This paper studies the incorporation of Casimir and van der Waals forces applied to a nanostructure with parallel configuration. The focus of this study is in a transition region in which Casimir force gradually transforms into van der Waals force. It is proposed that in the transition region, a proportion of both Casimir and van der Waals forces, as the interacting nanoscale forces, can be considered based on the separation distance between upper structure and substrate during deflection. Moreover, as the separation distance descends during deflection, the nanoscale forces could transform from Casimir to a proportion of both Casimir and van der Waals forces and so as to van der Waals. This is also extended to the entire surface of the nanostructure in such a way that any point of the structure may be subjected to Casimir, van der Waals or a proportion of both of them about its separation distance from the substrate. Therefore, a mathematical model is presented which calculate the incorporation of Casimir and van der Waals forces considering transition region and their own domination area. The mechanical behavior of a circular nano-plate has been investigated as a case study to illustrate how different approaches to nanoscale forces lead to different results. For this purpose, the pull-in phenomena and frequency response in terms of magnitude have been studied based on Eringen nonlocal elasticity theory. The results are presented using different values of the nonlocal parameter and indicated in comparison with those of the classical theory. These results also amplify the idea of studying the mechanical behavior of nanostructures using the nonlocal elasticity theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.