Abstract

We investigated the optical spin Hall effect (OSHE) of the light field from a closed elliptical metallic curvilinear nanoslit instead of the usual truncated curvilinear nanoslit. By making use of the characteristic bright spots in the light field formed by the noncircular symmetry of the elliptical slit and by introducing a method to separate the incident spin component (ISC) and converted spin component (CSC) of the output field, the OSHE manifested in the spot shifts in the CSC was more clearly observable and easily measurable. The slope of the elliptical slit, which was inverse along the principal axes, provided a geometric phase gradient to yield the opposite shifts of the characteristic spots in centrosymmetry, with a double shift achieved between the spots. Regarding the mechanism of this phenomenon, the flip of the spin angular momentum (SAM) of CSC gave rise to an extrinsic orbital angular momentum corresponding to the shifts of the wavelet profiles of slit elements in the same rotational direction to satisfy the conservation law. The analytical calculation and simulation of finite-difference time domain were performed for both the slit element and the whole slit ellipse, and the evolutions of the spot shifts as well as the underlying OSHE with the parameters of the ellipse were achieved. Experimental demonstrations were conducted and had consistent results. This study could be of great significance for subjects related to the applications of the OSHE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.