Abstract
Spontaneous fluctuations of the magnetization of a spin system in thermodynamic equilibrium (spin noise) manifest themselves as noise in the Faraday rotation of probe light. We show that the correlation properties of this noise over the optical spectrum can provide clear information about the composition of the spin system that is largely inaccessible for conventional linear optics. Such optical spectroscopy of spin noise, e.g., allows us to clearly distinguish between optical transitions associated with different spin subsystems, to resolve optical transitions that are unresolvable in the usual optical spectra, to unambiguously distinguish between homogeneously and inhomogeneously broadened optical bands, and to evaluate the degree of inhomogeneous broadening. These new possibilities are illustrated by theoretical calculations and by experiments on paramagnets with different degrees of inhomogeneous broadening of optical transitions [atomic vapors of 41K and singly charged (In,Ga)As quantum dots].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.