Abstract
Semiconductor spin noise spectroscopy (SNS) has emerged as a unique experimental tool that utilizes spin fluctuations to provide profound insight into undisturbed spin dynamics in doped semiconductors and semiconductor nanostructures. The technique maps ever present stochastic spin polarization of free and localized carriers at thermal equilibrium via the Faraday effect onto the light polarization of an off-resonant probe laser and was transferred from atom optics to semiconductor physics in 2005. The inimitable advantage of spin noise spectroscopy to all other probes of semiconductor spin dynamics lies in the fact that in principle no energy has to be dissipated in the sample, i.e., SNS exclusively yields the intrinsic, undisturbed spin dynamics and promises optical non-demolition spin measurements for prospective solid state based optical spin quantum information devices. SNS is especially suitable for small electron ensembles as the relative noise increases with decreasing number of electrons. In this review, we first introduce the basic principles of SNS and the difference in spin noise of donor bound and of delocalized conduction band electrons. We continue the introduction by discussing the spectral shape of spin noise and prospects of spin noise as a quantum interface between light and matter. In the main part, we give a short overview about spin relaxation in semiconductors and summarize corresponding experiments employing SNS. Finally, we give in-depth insight into the experimental aspects and discuss possible applications of SNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.