Abstract

It is shown that in many cases an adequate description of optical spectra of semiconductor quantum dots requires a treatment beyond the commonly used adiabatic approximation. We have developed a theory of phonon-assisted optical transitions in semiconductor quantum dots, which takes into account non-adiabaticity of the exciton–phonon system. Effects of non-adiabaticity lead to a mixing of different exciton and phonon states that provides a key to the understanding of surprisingly high intensities of phonon satellites observed in photoluminescence spectra of quantum dots. A breakdown of the adiabatic approximation gives an explanation also for discrepancies between the serial law, observed in multi-phonon optical spectra of some quantum dots, and the Franck–Condon progression, prescribed by the adiabatic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.