Abstract

The construction of BEaTriX, the Beam Expander Testing X-ray facility, is underway at INAF-OAB (Osservatorio Astronomico di Brera). This laboratory-based X-ray source was designed to generate a broad (170 mm x 60 mm), uniform, and collimated X-ray beam, with a residual divergence of 1.5 arcsec HEW at either 1.49 keV and 4.51 keV. The main scientific driver for BEaTriX is represented by the opportunity to routinely calibrate the modular elements of the ATHENA (ESA) X-ray telescope, based on the silicon pore optics (SPO) technology. Nevertheless, the application domain of BEaTriX is potentially much wider (e.g., X-ray tomography). BEaTriX comprises a microfocus source of X-rays, followed by an optical chain including a collimating mirror, crystal monochromators, and an asymmetric beam expander. The final beam collimation and homogeneity relies on the optical quality of the optical components (X-ray source dimension, mirror polishing, crystal lattice regularity) and on their mutual alignment. In order to determine the most critical parameters, focus the development efforts, and establish specifications, a set of optical simulations has been built. Our paper describes the simulation tool we developed to this specific aim, and discusses the results achieved in terms of manufacturing and alignment tolerances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.