Abstract

The ATHENA X-ray telescope comprises an optical system with several hundreds of Silicon Pore Optics (SPO) Mirror Modules (MM) to be assembled. All the MMs have to be tested for acceptance before integration. INAF-Osservatorio Astronomico Brera is building in its premises of Merate (Italy) a unique pathfinder facility, BEaTriX, which is characterized by a broad (170 ×60 mm2), uniform and parallel X-ray beam (divergence ≤ 1.5 arcsec HEW) at the energies of 1.49 and 4.51 keV. BEaTriX prime goal is to prove that it is possible to perform the acceptance tests (PSF and Aeff) of the ATHENA SPO MM’s at the production rate of 3 MM/day. The system is very compact (9 × 18 m2) and it is designed with modular compartments where the vacuum can be broken independently to replace the optics under test. It works at a vacuum level of 10-3 mbar, easily evacuated in a short time. The expanded and parallel beam is obtained with an X-ray microfocus source placed in the focus of a paraboloidal mirror, a monochromation stage with 4 symmetrically cut crystals, and an expansion stage where the beam is diffracted and expanded by an asymmetrically-cut crystal. The key axes of all the optical components are motorized in vacuum for a proper beam alignment. The expanded beam fully illuminates the aperture of the MMs, imaging the focused beam at 12 m distance on a CCD camera, with the sensor in vacuum and motorized in air for XYZ movements. A thermal box is also present to radiatively heat the MM and check its optical performances under different temperatures. The design of the facility started in 2012 and has been finalised under an ESA contract. After completing the design, the facility is now in the realization phase. This paper provides an overview of the current status of the facility realization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.