Abstract
Optical sectioning is performed by collecting the fluorescent emission of two-exciton states in colloidal quantum dots. The two-exciton state is created by two consecutive resonant absorption events, thus requiring unprecedented low excitation energy and peak powers as low as 10(5) W/cm(2). The depth resolution is shown to be equivalent to that of standard multiphoton microscopy, and it was found to deteriorate only slowly as saturation of the two-exciton state is approached, owing to signal contribution from higher excitonic states.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have